青岛科技大学纳米电催化课题组
当前位置: 首页>>研究成果>>期刊论文>>正文

 

68. Synthesis and Properties of Ni-doped Goethite and Ni-doped Hematite Nanorods. Croat. Chem. Acta, 2018, 91(3), 389–401
2018-09-11 20:00  

Synthesis and Properties of Ni-doped Goethite and Ni-doped Hematite Nanorods

S. Krehula a, *, M. Risti_c a, C. Wu b, e, X. Li b, d, e, L. Jiang b, c, J.Wang b, d, G. Sun b, T. Zhang d, e, M. Perovi_c f, M. Bo_skovi_c f, B. Anti_c f, L. Kratofil Krehula g, B. Kobzi h, S. Kubuki h, S. Musi_c a

a Division of Materials Chemistry and Center of Excellence for Advanced Materials and Sensing Devices, RuCer Bo_skovi_c Institute, P.O. Box 180, HR-10002, Zagreb, Croatia

b Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China

c College of Material Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China

d Mossbauer Effect Data Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China

e University of the Chinese Academy of Sciences, Beijing, 100039, China

f Condensed Matter Physics Laboratory, Vin_ca Institute of Nuclear Sciences, University of Belgrade, P. O. Box 522, 11001 Belgrade, Serbia

g Faculty of Chemical Engineering and Technology, University of Zagreb, Maruli_cev Trg 19, P. O. Box 177, HR-10000, Zagreb, Croatia

h Department of Chemistry Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachioji, Tokyo, 192-0397, Japan

Abstract

 

Ni-doped goethite (α-FeOOH) nanorods were synthesized from mixed Fe(III)-Ni(II) nitrate solutions with various Ni/(Ni+Fe) ratios (0, 5, 10, 20, 33 and 50 mol % Ni) by hydrothermal precipitation in a highly alkaline medium using the strong organic alkali, tetramethyl-ammonium hydroxide (TMAH). Ni-doped hematite (α-Fe2O3) nanorods were obtained by calcination of Ni-doped goethite nanorods at 400 °C. The Ni2+-for-Fe3+ substitution in goethite and hematite was confirmed by determination of the unit cell expansion (due to the difference in the ionic radii of Fe3+ and Ni2+) using XRPD and determination of the reduction of a hyperfine magnetic field (due to the difference in magnetic moments of Fe3+ and Ni2+) using Mössbauer spectroscopy. Single-phase goethite nanorods were found in samples containing 0 or 5 mol % Ni. A higher Ni content in the precipitation system (10 mol % or more) resulted in a higher Ni2+-for-Fe3+ substitution in goethite, and larger Ni-doped goethite nanorods, though with the presence of low crystalline Ni-containing ferrihydrite and Ni ferrite (NiFe2O4) as additional phases. Significant changes in FT-IR and UV-Vis-NIR spectra of prepared samples were observed with increasing Ni content. Electrochemical measurements of samples showed a strong increase in oxygen evolution reaction (OER) electrocatalytic activity with increasing Ni content.

 

Keywords: α-FeOOH, α-Fe2O3, Ni doping, XRPD, Mössbauer spectroscopy, FE-SEM, OER.


关闭窗口

姜鲁华 教授
中科院百人

泰山学者特聘教授

德国洪堡学者

     能源短缺和环境污染是当今世界面临的两大难题,研究团队围绕洁净高效新型电能源技术,聚焦电能源相关的纳米材料和电催化应用基础研究。团队已发表SCI收录论文近200篇,申请发明专利80余件。纳米材料与电催化团队负责人姜鲁华教授连续多年入选Elsevier 能源领域/材料领域“中国高被引学者”和“全球前2%顶尖科学家”榜单。主持科技部、国家基金委、山东省科技厅等省部级以上项目20余项。研究成果曾获国家自然科学二等奖、辽宁省自然科学一等奖、国防技术发明二等奖、大连市技术发明一等奖、山东省自然科学学术创新奖等多个奖项。团队教师兼任 Chemical Engineering JournalNano Materials ScineceJournal of Electrochemistry 等多个期刊的编委/编辑。团队多名研究生获得国家奖学金和各类奖助学金以及研究生创新研究计划支持,培养的本科生多人获得大学生创新研究计划支持。

    欢迎有志于新能源和环境纳米电催化研究的青年人才和优秀学子加入团队!


1. 燃料电池催化剂

2. 海水分解制氢

3. 二氧化碳电还原

4. 金属-海水电池

5. 氮的电化学转化