青岛科技大学纳米电催化课题组
当前位置: 首页>>研究成果>>期刊论文>>正文

 

103. Amine-Ligand Modulated Ruthenium Nanoclusters as a Superior Bi-functional Hydrogen Electrocatalyst in Alkaline Media, J Mater Chem A, 2021, 9, 22934-22342
2021-08-11 13:09  

Jie Wang,a Jing Liu,*a Boyang Zhang,a Jie Gao,a Guangbo Liu,a Xuejing Cui,a Jinxun Liu,*b Luhua Jiang*a


a College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China

b Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China

Abstract

An active and stable bi-functional catalyst for hydrogen oxidation reaction (HOR) and hydrogen evolution reaction (HER) is highly desirable for the clean energy conversion devices, such as anion exchange membrane fuel cells (AEMFCs) and magnesium (Mg)-sea-water batteries. Herein, DFT analysis predicates that the amine-ligand modulation manipulates the d-band center of ruthenium (Ru) downshift from the Fermi level, resulting in optimized hydrogen and hydroxide bonding energies (HBE, OHBE), and thus lowering the limiting energy of HOR/HER. We elaborately fabricate NH2-ligand modulated Ru nanoclusters (Ru/PEI-XC), taking advantage of the abundant -NH2 groups of polyethylene imine (PEI). The optimal Ru/PEI-XC catalyst exhibits a superior HOR activity of 423.3 A/g metal at an overpotential (ƞ) of 50 mV and a specific exchange current density of 687.1 μA/cmmetal, which is about 1.7 and 3.6 folds of the commercial Pt/C catalyst. Ru/PEI-XC presents overwhelming advantage for the HER in a wide pH range, especially in alkaline electrolyte (ƞ = 13 mV at -10 mA/cm), which is 20 mV lower than Pt/C. Both the potentiostatic and accelerated degradation tests manifest an excellent long-term stability of Ru/PEI-XC in catalyzing HORand HER. Furthermore, Ru/PEI-XC as the anode of an AEMFC delivers a peak power density of 1.4 W/mgPGM, comparable with its Pt/C-based counterpart. A proof-of-concept rechargeable Mg-sea-water battery could also be driven by the Ru/PEI-XC cathode, delivers a maximum discharging power density of 18.9 mW/cm, with low charging voltage and good cycling properties. This study reveals that ligand modulation is an effective strategy to manipulate the d-band center of metals and tune the reactivity, which paves an avenue for designing advanced hydrogen electrocatalysts.


DOI: 10.1039/D1TA06995K


关闭窗口

姜鲁华 教授
中科院百人

泰山学者特聘教授

德国洪堡学者

     能源短缺和环境污染是当今世界面临的两大难题,研究团队围绕洁净高效新型电能源技术,聚焦电能源相关的纳米材料和电催化应用基础研究。团队已发表SCI收录论文近200篇,SCI他引>8000次,H指数49。纳米材料与电催化团队负责人姜鲁华教授连续多年入选Elsevier 能源领域/材料领域“中国高被引学者”和“全球前2%顶尖科学家”榜单。申请发明专利百余件,授权专利60余件。参与编写英文著作4部,译著1部。主持科技部、国家基金委、山东省科技厅等省部级以上项目20余项。研究成果曾获国家自然科学二等奖、辽宁省自然科学一等奖、国防技术发明二等奖、大连市技术发明一等奖、山东省自然科学学术创新奖等多个奖项。团队教师兼任 Chemical Engineering JournalNano Materials ScineceJournal of Electrochemistry 等多个期刊的编委/编辑。团队培养硕博士研究生50余名,多名研究生获得国家奖学金和各类奖助学金以及研究生创新研究计划支持,培养的本科生多人获得大学生创新研究计划支持。

    欢迎有志于新能源和环境纳米电催化研究的青年人才和优秀学子加入团队!


1. 燃料电池催化剂

2. 海水分解制氢

3. 二氧化碳电还原

4. 金属-海水电池

5. 氮的电化学转化