青岛科技大学纳米电催化课题组
当前位置: 首页>>研究成果>>期刊论文>>正文

 

113. Axial Ligand Promoted Phosphate Tolerance of Atomically Dispersed Fe Catalyst towards Oxygen Reduction Reaction, J Mater Chem A, 2022,10,16722-16729
2022-05-10 12:23  

Jing Liu,1 Jie Wang,1 Linjuan Zhang,2 Chaohua Fan,1 Xin Zhou,3 Bingsen Zhang,4 Xuejing Cui,1 Jianqiang Wang,2,* Yi Cheng,5,* Shuhui Sun,6 Luhua Jiang1,*

1 Electrocatalysis & Nanomaterial Laboratory, College of Materials Science & Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China

2 Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China

3 College of Environment and Chemical Engineering, Dalian University, Dalian 116622, China

4 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China

5 Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China

6 Institute National de la Recherche Scientifique (INRS), Centre Énergie Matériaux et Télécommunications, Varennes, Québec J3X 1P7, Canada


ABSTRACT: Phosphoric acid-doped polybenzimidazole (PA-PBI) membrane fuel cells are gaining popularity as a promising technology for generating electricity due to their high operating temperature (150-200oC) and thus accelerated electrode reaction kinetics. However, strong phosphate anions (PA) absorption on Pt surface severely limits catalytic activity and thus degrades the device efficiency. Developing active and stable catalysts that are resistant to phosphate anions is of great significance for PA-PBI fuel cells. Herein, a highly active and PA tolerant catalyst is obtained by elaborately designing the coordination environment of the iron center. The experimental and theoretical studies show that the planar Fe-N4 moiety with an axial O ligand weakens PA adsorption on Fe active centers, while promotes oxygen molecule dissociation, resulting in excellent PA tolerance and ORR activity with the half-wave potential remaining at 0.81 V. The axial-ligand promoted Fe-N-C catalyst also delivers a high peak power density of 229 mW cm-2 in a PA-PBI fuel cell with no back-pressure. This study shed light on the intrinsic cause for the PA-tolerance of Fe-N-C catalysts at the molecular level, which provides guidance for designing highly active and stable electrocatalysts for PA-PBI fuel cells.

Keywords: high temperature polymer electrolyte fuel cells; phosphate anion poisoning; axial ligand; Fe-N-C; oxygen reduction reaction


DOI: 10.1039/D2TA03312G




关闭窗口

姜鲁华 教授
中科院百人

泰山学者特聘教授

德国洪堡学者

     能源短缺和环境污染是当今世界面临的两大难题,研究团队围绕洁净高效新型电能源技术,聚焦电能源相关的纳米材料和电催化应用基础研究。团队已发表SCI收录论文近200篇,SCI他引>8000次,H指数49。纳米材料与电催化团队负责人姜鲁华教授连续多年入选Elsevier 能源领域/材料领域“中国高被引学者”和“全球前2%顶尖科学家”榜单。申请发明专利百余件,授权专利60余件。参与编写英文著作4部,译著1部。主持科技部、国家基金委、山东省科技厅等省部级以上项目20余项。研究成果曾获国家自然科学二等奖、辽宁省自然科学一等奖、国防技术发明二等奖、大连市技术发明一等奖、山东省自然科学学术创新奖等多个奖项。团队教师兼任 Chemical Engineering JournalNano Materials ScineceJournal of Electrochemistry 等多个期刊的编委/编辑。团队培养硕博士研究生50余名,多名研究生获得国家奖学金和各类奖助学金以及研究生创新研究计划支持,培养的本科生多人获得大学生创新研究计划支持。

    欢迎有志于新能源和环境纳米电催化研究的青年人才和优秀学子加入团队!


1. 燃料电池催化剂

2. 海水分解制氢

3. 二氧化碳电还原

4. 金属-海水电池

5. 氮的电化学转化