青岛科技大学纳米电催化课题组
当前位置: 首页>>研究成果>>期刊论文>>正文

 

111. Mitigation of RuO6 Octahedron Distortion by Enhanced A-site Electronegativity in Pyrochlores for Acidic Water Oxidation, J Mater Chem A,2022, 10, 9419
2022-02-18 13:36  

Jiabiao Yana, +, Jing Zhuc, +, Dawei Chena, *, Shuai Liud, Xu Zhanga, Shoushan Yua,

Zhenhua Zengb, * Luhua Jianga, *, Fanglin Dua

a. College of Material Science and Engineering, Qingdao University of Science and Technology, Zhengzhou Road 53, Qingdao, 266042, China.

E-mail: D. Chen (daweichen@qust.edu.cn), L. Jiang (luhuajiang@qust.edu.cn)

b. Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA. E-mail: Z. Zeng (zeng46@purdue.edu)

c. Department of Chemical Physics, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, Anhui, China.

d. School of Mechatronics and Energy Engineering, Ningbo Institute of Technology, Zhejiang University, Ningbo, 315100, China.


Abstract:

Ruthenium-based pyrochlore oxides (A2Ru2O7) have emerged recently as state-of-the-art catalysts for acidic water oxidation, however, the stability still needs to be further improved. Exploring the relationship between the A-site cation and the structure of the active site (Ru) is highly desirable toward for designing efficient electrocatalysts. Herein, we rationally manipulate the A-site atom substitution in Y2Ru2O7 (YRO) by Ho3+, which has the identical ionic radius with Y3+, but higher electronegativity due to the 4f electron effect. It demonstrated that the higher electronegativity could cause the RuORu bond angle enlarged and the Ru-O bond length reduced, mitigating the RuO6 octahedral distortion in Ho2Ru2O7 (HRO) for enhancing the intrinsic OER activity. Compared with other pyrochlore oxides, HRO displayed an ultralow overpotential of 215 mV @ 10 mA cm–2 with lower Ru content and higher mass activities, showing long-term (> 60h) stability in acid media. Density functional theory (DFT) calculation revealed that the higher electronegativity of Ho could strengthen the Ru-O covalency, thereby optimizing the free energy of oxygen species (GOOH* - GO2) for better catalytic activity. In addition, the higher electronegativity could reduce the oxygen vacancies and improve the formation energy of oxygen vacancies for better resistance to the Ru dissolution. This work reveals the inherent relationship of the A-site atom electronegativity, the lattice structure of the active site, and the activity-stability of the catalysts.







关闭窗口

姜鲁华 教授
中科院百人

泰山学者特聘教授

德国洪堡学者

     能源短缺和环境污染是当今世界面临的两大难题,研究团队围绕洁净高效新型电能源技术,聚焦电能源相关的纳米材料和电催化应用基础研究。团队已发表SCI收录论文近200篇,申请发明专利80余件。纳米材料与电催化团队负责人姜鲁华教授连续多年入选Elsevier 能源领域/材料领域“中国高被引学者”和“全球前2%顶尖科学家”榜单。主持科技部、国家基金委、山东省科技厅等省部级以上项目20余项。研究成果曾获国家自然科学二等奖、辽宁省自然科学一等奖、国防技术发明二等奖、大连市技术发明一等奖、山东省自然科学学术创新奖等多个奖项。团队教师兼任 Chemical Engineering JournalNano Materials ScineceJournal of Electrochemistry 等多个期刊的编委/编辑。团队多名研究生获得国家奖学金和各类奖助学金以及研究生创新研究计划支持,培养的本科生多人获得大学生创新研究计划支持。

    欢迎有志于新能源和环境纳米电催化研究的青年人才和优秀学子加入团队!


1. 燃料电池催化剂

2. 海水分解制氢

3. 二氧化碳电还原

4. 金属-海水电池

5. 氮的电化学转化