青岛科技大学纳米电催化课题组
当前位置: 首页>>研究成果>>期刊论文>>正文

 

129. Tuning C1/C2 Selectivity of CO2 Electrochemical Reduction over in-Situ Evolved CuO/SnO2 Heterostructure, Angew. Chem.Int. Ed.,2023, 62(40), e202306456
2023-04-29 10:47  


Min Wanga#, Huimin Chena#, Min WangbJinxiu Wanga, Yongxiao Tuo*c, Wenzhen Lid, Shanshan Zhoua, Linghui Konga, Guangbo Liua, Luhua Jiang*a, Guoxiong Wang*e

a Nanomaterials and Electrocatalysis Laboratory, College of Materials and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, P. R. China

b State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, P. R. China

c State Key Laboratory of Heavy Oil Processing, College of New Energy, China University of Petroleum (East China), Qingdao, Shandong 266580, P. R. China

d Department of Chemical & Biological Engineering, Iowa State University, Ames, IA 50011-1098, Unites States.

e State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 P. R. China

* Corresponding author. E-mail addresses: yxtuo@upc.edu.cn (Y. Tuo); luhuajiang@qust.edu.cn (L. Jiang); wanggx@dicp.ac.cn (G. Wang)

# These authors contribute equally to this work.


KEYWORDS: CO2 electrochemical reduction; in-situ characterization; heterostructure; selectivity to ethanol; DFT calculations

Abstract:

Heterostructured oxides with versatile active sites, as a class of efficient catalysts for CO2 electrochemical reduction (CO2ER), are prone to undergo structure reconstruction under working conditions, thus bringing challenges to understanding the reaction mechanism and rationally designing catalysts. Herein, we for the first time elucidate the structural reconstruction of CuO/SnO2 under electrochemical potentials and reveal the intrinsic relationship between CO2ER product selectivity and the in-situ evolved heterostructures. At -0.85 VRHE, the CuO/SnO2 evolves to Cu2O/SnO2 with high selectivity to formate (Faradaic efficiency of 54.81%). Mostly interestingly, it is reconstructed to Cu/SnO2-x at -1.05 VRHE with significantly improved Faradaic efficiency to ethanol of 39.8%. In-situ Raman spectra and density functional theory (DFT) calculations reveal that the synergetic absorption of *COOH and *CHOCO intermediates at the interface of Cu/SnO2-x favors the formation of *CO and decreases the energy barrier of C-C coupling, leading to high selectivity to ethanol.

全文链接:https://doi.org/10.1002/anie.202306456






关闭窗口

姜鲁华 教授
中科院百人

泰山学者特聘教授

德国洪堡学者

     能源短缺和环境污染是当今世界面临的两大难题,研究团队围绕洁净高效新型电能源技术,聚焦电能源相关的纳米材料和电催化应用基础研究。团队已发表SCI收录论文近200篇,SCI他引>8000次,H指数49。纳米材料与电催化团队负责人姜鲁华教授连续多年入选Elsevier 能源领域/材料领域“中国高被引学者”和“全球前2%顶尖科学家”榜单。申请发明专利百余件,授权专利60余件。参与编写英文著作4部,译著1部。主持科技部、国家基金委、山东省科技厅等省部级以上项目20余项。研究成果曾获国家自然科学二等奖、辽宁省自然科学一等奖、国防技术发明二等奖、大连市技术发明一等奖、山东省自然科学学术创新奖等多个奖项。团队教师兼任 Chemical Engineering JournalNano Materials ScineceJournal of Electrochemistry 等多个期刊的编委/编辑。团队培养硕博士研究生50余名,多名研究生获得国家奖学金和各类奖助学金以及研究生创新研究计划支持,培养的本科生多人获得大学生创新研究计划支持。

    欢迎有志于新能源和环境纳米电催化研究的青年人才和优秀学子加入团队!


1. 燃料电池催化剂

2. 海水分解制氢

3. 二氧化碳电还原

4. 金属-海水电池

5. 氮的电化学转化