青岛科技大学纳米电催化课题组
当前位置: 首页>>研究成果>>期刊论文>>正文

 

132.Co3Fe7/CoCx nanoparticles encapsulated in nitrogen-doped carbon nanotubes synergistically boost oxygen reduction reaction for Zn-air batteries, J. Colloid Interface Sci, 2024, 655, 427-438.
2023-07-29 16:28  

Lang Xiao, Wanqing Yu, Jing Liu *, Shankui Luan, Wenyu Pei, Xuejing Cui, Luhua Jiang*

College of Materials Science and Engineering, Qingdao University of Science and Technology,

Qingdao, Shandong 266042, China.


Abstract: Developing an efficient and stable non-precious metal catalyst (NPMC) for oxygen reduction reaction (ORR) is crucial for Zn-air batteries. Herein, we report a super-molecule self-scarifying template and confinement pyrolysis strategy to obtain an efficient ORR catalyst of well-dispersed Co3Fe7/CoCx heterostructure nanoparticles encapsulated by nitrogen-doped carbon nanotubes (Co3Fe7/CoCx@N-CNT). The as-synthesized Co3Fe7/CoCx@N-CNT catalyst exhibits outstanding ORR activity, with a half-wave potential of 0.88 V versus a reversible hydrogen electrode (vs. RHE) and good stability. The Zn-air battery based on the Co3Fe7/CoCx@N-CNT cathode achieves a peak power density of 265 mW cm-2 and extra-long durability over 200 hours, which is superior to most of the reported NPMCs and even the Pt/C counterpart. The physical characterization and electrochemical poisoning experiments discover that Co3Fe7/CoCx nanoparticles in the core along with pyridine N and Fe-Nx hosted in the carbon nanotube all act as active sites for the ORR. Further theoretical calculation demonstrates charge redistribution between the Co3Fe7/CoCx nanoparticles and the Fe-Nx carbon overlayers downshift d-band center of Fe and optimize the adsorption, which boosts the ORR kinetics. This work provides an effective strategy to synthesize non-precious metal ORR catalysts with multiple active sites and highlights the synergistic role of encapsulated nanoparticles and carbon support.

Keywords: Heterostructure; Oxygen reduction reaction; Confined pyrolysis; Zn-air battery; Synergistic catalysis

*Corresponding authors: liuj955@qust.edu.cn; luhuajiang@qust.edu.cn (L. Jiang)


https://doi.org/10.1016/j.jcis.2023.11.034









关闭窗口

姜鲁华 教授
中科院百人

泰山学者特聘教授

德国洪堡学者

     能源短缺和环境污染是当今世界面临的两大难题,研究团队围绕洁净高效新型电能源技术,聚焦电能源相关的纳米材料和电催化应用基础研究。团队已发表SCI收录论文近200篇,申请发明专利80余件。纳米材料与电催化团队负责人姜鲁华教授连续多年入选Elsevier 能源领域/材料领域“中国高被引学者”和“全球前2%顶尖科学家”榜单。主持科技部、国家基金委、山东省科技厅等省部级以上项目20余项。研究成果曾获国家自然科学二等奖、辽宁省自然科学一等奖、国防技术发明二等奖、大连市技术发明一等奖、山东省自然科学学术创新奖等多个奖项。团队教师兼任 Chemical Engineering JournalNano Materials ScineceJournal of Electrochemistry 等多个期刊的编委/编辑。团队多名研究生获得国家奖学金和各类奖助学金以及研究生创新研究计划支持,培养的本科生多人获得大学生创新研究计划支持。

    欢迎有志于新能源和环境纳米电催化研究的青年人才和优秀学子加入团队!


1. 燃料电池催化剂

2. 海水分解制氢

3. 二氧化碳电还原

4. 金属-海水电池

5. 氮的电化学转化