青岛科技大学纳米电催化课题组
当前位置: 首页>>研究成果>>期刊论文>>正文

 

133. A cascade of in situ conversion of bicarbonate to CO2 and CO2 electroreduction in a flow cell with a Ni-N-S catalyst, J Energy Chem, 2024,88,183-193.
2023-08-03 16:29  

Linghui Konga, Min Wanga*, Yongxiao Tuob, Shanshan Zhoua, Jinxiu Wanga, Guangbo Liu, Xuejing Cuia, Luhua Jianga*

a Nanomaterials and Electrocatalysis Laboratory, College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, P. R. China

b State Key Laboratory of Heavy Oil Processing, College of New Energy, China University of Petroleum (East China), Qingdao, Shandong 266580, P. R. China

* Corresponding author. E-mail address: wmin@qust.edu.cn (M. Wang); luhuajiang@qust.edu.cn (L. Jiang)


ABSTRACT

Combination of CO2 capture using inorganic alkali with subsequently electrochemical conversion of the resultant to high–value chemicals is a promising route of low cost and high efficiency. The electrochemical reduction of is challenging due to the inaccessible of negatively charged molecular groups to the electrode surface. Herein, we adopt a comprehensive strategy to tackle this challenge, i.e., cascade of in situ chemical conversion of to CO2 and CO2 electrochemical reduction in a flow cell. With a tailored Ni–N–S single atom catalyst (SACs), where sulfur (S) atoms located in the second shell of Ni center, the CO2 electroreduction (CO2ER) to CO is boosted. The experimental results and density functional theory (DFT) calculations reveal that the introduction of S increases the p electron density of N atoms near Ni atom, thereby stabilizing *H over N and boosting the first proton coupled electron transfer process of CO2ER, i.e., *+e+*H+*CO2→*COOH. As a result, the obtained catalyst exhibits a high faradaic efficiency (FECO ~ 98%) and a low overpotential of 425 mV for CO production as well as a superior turnover frequency (TOF) of 47397 h–1, outcompeting most of the reported Ni SACs. More importantly, an extremely high FECO of 90% is achieved at 50 mA·cm–2 in the designed membrane electrode assembly (MEA) cascade electrolyzer fed with liquid bicarbonate. This work not only highlights the significant role of the second coordination on the first coordination shell of the central metal for CO2ER, but also provides an alternative and feasible strategy to realize the electrochemical conversion of to high–value chemicals.

Keywords: S doped Ni–N–C single atom catalysts; CO2 electrochemical reduction; DFT calculations; membrane electrode assembly; reduction of bicarbonate


https://doi.org/10.1016/j.jechem.2023.09.024

相关报道链接:https://mp.weixin.qq.com/s/ni0XdzsXEl3ZrBdXgO5GtQ







关闭窗口

姜鲁华 教授
中科院百人

泰山学者特聘教授

德国洪堡学者

     能源短缺和环境污染是当今世界面临的两大难题,研究团队围绕洁净高效新型电能源技术,聚焦电能源相关的纳米材料和电催化应用基础研究。团队已发表SCI收录论文近200篇,申请发明专利80余件。纳米材料与电催化团队负责人姜鲁华教授连续多年入选Elsevier 能源领域/材料领域“中国高被引学者”和“全球前2%顶尖科学家”榜单。主持科技部、国家基金委、山东省科技厅等省部级以上项目20余项。研究成果曾获国家自然科学二等奖、辽宁省自然科学一等奖、国防技术发明二等奖、大连市技术发明一等奖、山东省自然科学学术创新奖等多个奖项。团队教师兼任 Chemical Engineering JournalNano Materials ScineceJournal of Electrochemistry 等多个期刊的编委/编辑。团队多名研究生获得国家奖学金和各类奖助学金以及研究生创新研究计划支持,培养的本科生多人获得大学生创新研究计划支持。

    欢迎有志于新能源和环境纳米电催化研究的青年人才和优秀学子加入团队!


1. 燃料电池催化剂

2. 海水分解制氢

3. 二氧化碳电还原

4. 金属-海水电池

5. 氮的电化学转化