青岛科技大学纳米电催化课题组
当前位置: 首页>>研究成果>>期刊论文>>正文

 

136. Heterostructure with Tightly-Bound Interface Between In2O3 Hollow Fiber and ZnIn2S4 Nanosheet toward Efficient Visible Light Driven Hydrogen Evolution, Appl. Catal. B, 2024,345,123697
2023-11-30 11:16  

Ping Lua,b, Ke Liub,, Yan Liub, Zhilin Jib, Xiaoxia Wangb, Bin Huib, Yukun Zhub*, Dongjiang Yangb*, Luhua Jianga*

a College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China

b School of Environmental Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao 266071, P. R. China

*Corresponding authors. E-mail addresses: d.yang@qdu.edu.cn(D. Yang); yukunzhu@qdu.edu.cn (Y. Zhu); luhuajiang@qust.edu.cn (L. Jiang)


Abstract

Photocatalytic hydrogen evolution reaction (HER) under sunlight is seen as the most promising way to produce renewable fuels. Indium oxide (In2O3) has attracted much attention in the field of solar hydrogen production due to its moderate band gap, which can be easily driven by visible light without photo-corrosion. However, the efficiency of HER of In2O3 is currently unsatisfactory due to fast recombination of photogenerated electrons and holes. To enhance the efficiency of HER of In2O3, herein, heterostructured In2O3/ZnIn2S4 is precisely constructed via in-situ growth of ZnIn2S4 on the In2O3 hollow fibers. The In2O3/ZnIn2S4 heterostructure exhibits a significantly enhanced photocatalytic activity compared with pure In2O3 hollow fibers and ZnIn2S4 with HER rates of 2.18 mmol/g/h. Such efficient photocatalytic hydrogen production is attributed to the tightly-bound interface between (001) planes of flake ZnIn2S4 and (222) planes of In2O3. Density functional theory calculations indicate compactly interface enabling efficient charge transfer and separation, which benefits the photocatalytic HER performance.


Keywords: Heterostructures; interface; photocatalytic; hollow fibers; hydrogen evolution


https://doi.org/10.1016/j.apcatb.2024.123697 




关闭窗口

姜鲁华 教授
中科院百人

泰山学者特聘教授

德国洪堡学者

     能源短缺和环境污染是当今世界面临的两大难题,研究团队围绕洁净高效新型电能源技术,聚焦电能源相关的纳米材料和电催化应用基础研究。团队已发表SCI收录论文近200篇,SCI他引>8000次,H指数49。纳米材料与电催化团队负责人姜鲁华教授连续多年入选Elsevier 能源领域/材料领域“中国高被引学者”和“全球前2%顶尖科学家”榜单。申请发明专利百余件,授权专利60余件。参与编写英文著作4部,译著1部。主持科技部、国家基金委、山东省科技厅等省部级以上项目20余项。研究成果曾获国家自然科学二等奖、辽宁省自然科学一等奖、国防技术发明二等奖、大连市技术发明一等奖、山东省自然科学学术创新奖等多个奖项。团队教师兼任 Chemical Engineering JournalNano Materials ScineceJournal of Electrochemistry 等多个期刊的编委/编辑。团队培养硕博士研究生50余名,多名研究生获得国家奖学金和各类奖助学金以及研究生创新研究计划支持,培养的本科生多人获得大学生创新研究计划支持。

    欢迎有志于新能源和环境纳米电催化研究的青年人才和优秀学子加入团队!


1. 燃料电池催化剂

2. 海水分解制氢

3. 二氧化碳电还原

4. 金属-海水电池

5. 氮的电化学转化