青岛科技大学纳米电催化课题组
当前位置: 首页>>研究成果>>期刊论文>>正文

 

140.Regulation of hydrogen binding energy via oxygen vacancy enables an efficient trifunctional Rh-Rh2O3 electrocatalyst for fuel cells and water splitting, J. Colloid Interface Sci,2024,664, 766-778
2024-01-11 11:16  


Jie Gao, Wanqing Yu, Jing Liu *, Lishuai Qin, Haodong Cheng, Xuejing Cui, Luhua Jiang *

Electrocatalysis & Nanomaterial Laboratory, College of Materials Science & Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China.

ABSTRACT:

Hydrogen production and utilization efficiency relies heavily on electrocatalysts. In this work, a Rh-Rh2O3 cluster with oxygen vacancies (Rh-OV-Rh2O3) is prepared as a tri-functional electrocatalyst for hydrogen oxidation reaction (HOR), hydrogen evolution reaction (HER), and hydrazine oxidation reaction (HzOR), involved in hydrazine-assisted water electrolysis for hydrogen production and a hydrogen fuel cell. The optimized Rh-Rh2O3/C-400 catalyst exhibits a mass activity of 2.29 mA μgRh-1 for HOR, with low potentials of 12 mVRHE for HER and 31 mVRHE for HzOR at 10 mA cm-2 in alkaline media, superior to the commercial Pt/C. It also displays promising performance in practical devices, i.e., the H2-O2 anion-exchange-membrane fuel cell delivers a high peak power density of 0.66 W cm-2, and the hydrazine-assisted water splitting electrolyzer based on Rh-Rh2O3/C-400 symmetric electrodes exhibits a low electrolysis voltage of 0.161 V at 0.1 A cm-2. Mechanistic studies reveal that the optimal hydrogen binding energy on Rh-OV-Rh2O3 contributes to the excellent catalytic activities in HOR, HER, and HzOR. This work not only develops a superior tri-functional Rh-based catalyst, but also highlights the importance of local chemical environments in surface, which especially for those reaction involving multi-intermediates governs the catalytic performance by manipulating the adsorption states/strength of intermediates/reactants.

Keywords: hydrogen electrode reaction; hydrazine oxidation reaction; tri-functional electrocatalyst; Rh-Rh2O3 cluster; oxygen vacancy

*Corresponding authors: liuj955@qust.edu.cn; luhuajiang@qust.edu.cn (L. Jiang)

https://doi.org/10.1016/j.jcis.2024.03.095




关闭窗口

姜鲁华 教授
中科院百人

泰山学者特聘教授

德国洪堡学者

     能源短缺和环境污染是当今世界面临的两大难题,研究团队围绕洁净高效新型电能源技术,聚焦电能源相关的纳米材料和电催化应用基础研究。团队已发表SCI收录论文近200篇,申请发明专利80余件。纳米材料与电催化团队负责人姜鲁华教授连续多年入选Elsevier 能源领域/材料领域“中国高被引学者”和“全球前2%顶尖科学家”榜单。主持科技部、国家基金委、山东省科技厅等省部级以上项目20余项。研究成果曾获国家自然科学二等奖、辽宁省自然科学一等奖、国防技术发明二等奖、大连市技术发明一等奖、山东省自然科学学术创新奖等多个奖项。团队教师兼任 Chemical Engineering JournalNano Materials ScineceJournal of Electrochemistry 等多个期刊的编委/编辑。团队多名研究生获得国家奖学金和各类奖助学金以及研究生创新研究计划支持,培养的本科生多人获得大学生创新研究计划支持。

    欢迎有志于新能源和环境纳米电催化研究的青年人才和优秀学子加入团队!


1. 燃料电池催化剂

2. 海水分解制氢

3. 二氧化碳电还原

4. 金属-海水电池

5. 氮的电化学转化