青岛科技大学纳米电催化课题组
当前位置: 首页>>研究成果>>期刊论文>>正文

 

142.Polyoxometalate-derived bi-functional crystalline/amorphous interfaces with optimized d-electron configuration for efficient self-powered hydrazine-seawater splitting, Chemical Engineering Journal, 2024, 488, 150897.
2024-01-12 11:16  


Qinghao Quana, Xiaolei Lia, Chen Songa, Qisen Jiaa, Huasen Lua, Xuejing Cuia, Guangbo Liua,*, Xin Chenb,*, and Luhua Jianga,*

a College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China

b Center for Computational Chemistry and Molecular Simulation, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China

*Emails: liugb@qust.edu.cn; chenxin830107@pku.edu.cn; luhuajiang@qust.edu.cn


Abstract

Hydrazine-assisted water electrolysis is a promising energy-efficient strategy for hydrogen production. Nonetheless, developing high-performance bi-functional electrocatalysts towards both hydrogen evolution reaction (HER) and hydrazine oxidation reaction (HzOR) remains great challenges, especially for hydrazine-seawater splitting. Herein, we report a polyoxometalate-assisted in-situ synthesis protocol for rationally design of crystalline/amorphous Pt/MoO3-x interfaces toward both efficient HER and HzOR. The polyoxometalate-derived crystalline/amorphous Pt/MoO3-x interfaces deliver working potentials of only -23 and -41 mV at 10 mA cm-2 for HER and HzOR in seawater electrolyte, respectively. Meanwhile, ultrahigh mass activities of 38.39 A mgPt-1 for HER at -100 mV potential and 23.84 A mgPt-1 for HzOR at 50 mV potential are achieved, over 30.2 and 52.9 times higher than those of commercial Pt/C. As bi-functional electrocatalysts for overall hydrazine-seawater splitting, the electrolyzer requires a cell voltage of only 55/238 mV at 10/100 mA cm-2, 1.584/1.543 V lower than that of the seawater splitting system. Moreover, a proof-of-concept self-powered hydrazine-seawater electrolysis system driven by direct hydrazine fuel cell is further demonstrated, which achieves a hydrogen production rate of 0.29 mL cm-2 min-1. DFT calculations verify that, the crystalline/amorphous interfaces endow Pt/MoO3-x an optimized d-electron configuration with favorable H* adsorption and promoted dehydrogenation kinetics of *N2H4 to *N2H3 in the potential-determining step. This work provides a novel strategy and inspiration toward the design of efficient bi-functional electrocatalysts for hydrazine-assisted hydrogen production from seawater.

Keywords: Crystalline/amorphous interface; d-electron configuration; hydrazine oxidation; hydrogen evolution; self-powered seawater splitting


https://doi.org/10.1016/j.cej.2024.150897





关闭窗口

姜鲁华 教授
中科院百人

泰山学者特聘教授

德国洪堡学者

     能源短缺和环境污染是当今世界面临的两大难题,研究团队围绕洁净高效新型电能源技术,聚焦电能源相关的纳米材料和电催化应用基础研究。团队已发表SCI收录论文近200篇,申请发明专利80余件。纳米材料与电催化团队负责人姜鲁华教授连续多年入选Elsevier 能源领域/材料领域“中国高被引学者”和“全球前2%顶尖科学家”榜单。主持科技部、国家基金委、山东省科技厅等省部级以上项目20余项。研究成果曾获国家自然科学二等奖、辽宁省自然科学一等奖、国防技术发明二等奖、大连市技术发明一等奖、山东省自然科学学术创新奖等多个奖项。团队教师兼任 Chemical Engineering JournalNano Materials ScineceJournal of Electrochemistry 等多个期刊的编委/编辑。团队多名研究生获得国家奖学金和各类奖助学金以及研究生创新研究计划支持,培养的本科生多人获得大学生创新研究计划支持。

    欢迎有志于新能源和环境纳米电催化研究的青年人才和优秀学子加入团队!


1. 燃料电池催化剂

2. 海水分解制氢

3. 二氧化碳电还原

4. 金属-海水电池

5. 氮的电化学转化