青岛科技大学纳米电催化课题组
当前位置: 首页>>研究成果>>期刊论文>>正文

 

148.Self-assembled gap-rich PdMn nanofibers with high mass/electron transport highways for electrocatalytic reforming of waste plastics, Adv Mater, accept.
2024-07-30 20:01  

Songliang Liu1, Kun Ma1, Huaifang Teng1, Weixin Miao1, Xiaotong Zhou1, Xuejing Cui1, Xin Zhou2,3* and Luhua Jiang1*, Shaojun Guo4*

1 Electrocatalysis & Nanomaterial Laboratory, College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.

2 Interdisciplinary Research Center for Biology and Chemistry, Liaoning Normal University, Dalian, Liaoning, 116029, P. R. China.

3 College of Environment and Chemical Engineering, Dalian University, Dalian 116622, P. R. China.

4 School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China.

E-mail addresses: zhouxin@dlu.edu.cn, luhuajiang@qust.edu.cn, guosj@bju.edu.cn

ABSTRACT

Innovating nanocatalysts with both high intrinsic catalytic activity and high selectivity is crucial for multi-electron reactions, however, their low mass/electron transport at industrial-level currents is often overlooked, which usually leads to low comprehensive performance at the device level. Herein, we report a Cl/O2 etching assisted self-assembly strategy for synthesizing a self-assembled gap-rich PdMn nanofibers with high mass/electron transport highway for greatly enhancing the electrocatalytic reforming of waste plastics at s industrial-level currents. The self-assembled PdMn nanofiber shows excellent catalytic activity in upcycling waste plastics into glycolic acid, with high current density of 223 mA cm2@0.75 V (vs. RHE), high selectivity (95.6%) and Faraday efficiency (94.3%) to glycolic acid in a flow electrolyzer. Density functional theory calculation, X-ray absorption spectroscopy combined with in-situ electrochemical Fourier transform infrared spectroscopy reveal that introduction of highly oxophilic Mn induces a downshift of the d-band center of Pd, which optimizes the adsorption energy of the reaction intermediates on PdMn surface, thereby facilitating the desorption of glycolic acid as a high-valued product. Computational fluid dynamics simulations confirm that the gap-rich nanofiber structure is conducive for mass transfer to deliver an industrial-level current. This work not only provides a strategy to synthesize a class of brand-new Pd-based nanofibers, but also opens up their application in conversion of waste plastics to high-valued C2 products.

KEYWORDS: self-assembled PdMn nanofibers, gap-rich, electrochemical synthesis, waste plastics upcycling, glycolic acid




关闭窗口

姜鲁华 教授
中科院百人

泰山学者特聘教授

德国洪堡学者

     能源短缺和环境污染是当今世界面临的两大难题,研究团队围绕洁净高效新型电能源技术,聚焦电能源相关的纳米材料和电催化应用基础研究。团队已发表SCI收录论文近200篇,申请发明专利80余件。纳米材料与电催化团队负责人姜鲁华教授连续多年入选Elsevier 能源领域/材料领域“中国高被引学者”和“全球前2%顶尖科学家”榜单。主持科技部、国家基金委、山东省科技厅等省部级以上项目20余项。研究成果曾获国家自然科学二等奖、辽宁省自然科学一等奖、国防技术发明二等奖、大连市技术发明一等奖、山东省自然科学学术创新奖等多个奖项。团队教师兼任 Chemical Engineering JournalNano Materials ScineceJournal of Electrochemistry 等多个期刊的编委/编辑。团队多名研究生获得国家奖学金和各类奖助学金以及研究生创新研究计划支持,培养的本科生多人获得大学生创新研究计划支持。

    欢迎有志于新能源和环境纳米电催化研究的青年人才和优秀学子加入团队!


1. 燃料电池催化剂

2. 海水分解制氢

3. 二氧化碳电还原

4. 金属-海水电池

5. 氮的电化学转化