青岛科技大学纳米电催化课题组
当前位置: 首页>>研究成果>>期刊论文>>正文

 

146.High photocatalytic activity of g-C3N4/CdZnS/MoS2 heterojunction for hydrogen production, Int J Hrogen Energy, 2024, 82, 776-785.
2024-03-25 14:08  

Ping Lu a,b, Haixia Zhao c, Zhengmin Li a, Mengzhu Chu a, Guangwen Xie a, Tian Xie c,*, Luhua Jiang a,*

a College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China

b College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, PR China

c College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China

In an effort to improve the light absorption efficiency of the photocatalyst, g-C3N4 nanosheets with visible light response have been prepared by roasting method, and the g-C3N4/CdZnS composite catalyst with 2D/0D architecture has been prepared by hydrothermal method after ultrasonic thinning. The g-C3N4/CdZnS/MoS2 composite catalyst with 2D/0D architecture has been synthesized by secondary hydrothermal method. TEM analysis proves that a close heterogeneous interface has been formed between g-C3N4 and CdZnS, and between CdZnS and MoS2. The ultraviolet diffuse reflectance spectrum shows that MoS2 has a wide light absorption range, which effectively enhances the light utilization ratio of the composite catalyst. The energy band structure diagram and photoelectrochemical test results show that a continuous stepped type II ternary heterojunction is formed among g-C3N4, CdZnS and MoS2, which promotes its separation of photogenerated charges. When the loading mass fraction of g-C3N4 and MoS2 is 4%, the hydrogen evolution rate of g-C3N4/CdZnS/MoS2 composite catalyst is 57.02 mmol g-1 h-1 under visible light, which is exceeding 20% that of g-C3N4/CdZnS and 4.79 times and 44.9 times higher than that of CdZnS and g-C3N4, respectively. The two-dimensional structure of g-C3N4 and MoS2 significantly improves the stability of the composite catalyst. This work offers feasible ways for ternary heterogeneous photocatalyst construction.


https://doi.org/10.1016/j.ijhydene.2024.07.449



关闭窗口

姜鲁华 教授
中科院百人

泰山学者特聘教授

德国洪堡学者

     能源短缺和环境污染是当今世界面临的两大难题,研究团队围绕洁净高效新型电能源技术,聚焦电能源相关的纳米材料和电催化应用基础研究。团队已发表SCI收录论文近200篇,申请发明专利80余件。纳米材料与电催化团队负责人姜鲁华教授连续多年入选Elsevier 能源领域/材料领域“中国高被引学者”和“全球前2%顶尖科学家”榜单。主持科技部、国家基金委、山东省科技厅等省部级以上项目20余项。研究成果曾获国家自然科学二等奖、辽宁省自然科学一等奖、国防技术发明二等奖、大连市技术发明一等奖、山东省自然科学学术创新奖等多个奖项。团队教师兼任 Chemical Engineering JournalNano Materials ScineceJournal of Electrochemistry 等多个期刊的编委/编辑。团队多名研究生获得国家奖学金和各类奖助学金以及研究生创新研究计划支持,培养的本科生多人获得大学生创新研究计划支持。

    欢迎有志于新能源和环境纳米电催化研究的青年人才和优秀学子加入团队!


1. 燃料电池催化剂

2. 海水分解制氢

3. 二氧化碳电还原

4. 金属-海水电池

5. 氮的电化学转化