青岛科技大学纳米电催化课题组
当前位置: 首页>>研究成果>>期刊论文>>正文

 

152. Driving photoelectrochemical water oxidation towards H2O2 via regulation of energy band structure of BiVO4, J Energy Chem, accept
2024-09-18 19:08  

Yan Zhao1, Qisen Jia1, Zhenming Tian1, Yanan Wang1, Jiashu Li1, Shixu Song1, Teng Fu1, Xuejing Cui1, Guangbo Liu1,*, Xin Zhou2,3,*, Luhua Jiang1,*

1 Nanomaterials & Electrocatalysis Laboratory, College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China

2 Interdisciplinary Research Center for Biology and Chemistry, Liaoning Normal University, Dalian 116029, PR China

3 College of Environment and Chemical Engineering, Dalian University, Dalian 116622, PR China

* Corresponding authors:liugb@qust.edu.cn; zhouxin@dlu.edu.cn; luhuajiang@qust.edu.cn

Abstract:

Photoelectrochemical water oxidation (PEC-WO) as a green and sustainable route to produce H2O2 has attracted extensive attentions. However, water oxidation to H2O2 via a 2e- pathway is thermodynamically more difficult than to O2 via a 4e- pathway. Herein, with a series of BiVO4-based photoanodes, the decisive factors determining the PEC activity and selectivity are elucidated, combining a comprehensive experimental and theoretical investigations. It is discovered that the ZnO/BiVO4 photoanode (ZnO/BVO) forms a Type-II heterojunction in energy level alignment, which due to the accelerated photogenerated charge separation/transfer dynamics generates denser surface holes and higher surface photovoltage, therefore the activity of water oxidation reaction is promoted. The selectivity of PEC-WO to H2O2 is found to be potential-dependent, i.e., at the lower potentials (PEC-dominated) surface hole density determines the selectivity and at the higher potentials (electrochemical-dominated) surface reaction barriers governs the selectivity. For the ZnO/BVO heterojunction photoanode, the higher surface hole density facilitates the generation of OH• and the subsequent OH•/OH• coupling to form H2O2, thus rising up with potentials; at the higher potentials, the 2-electron pathway barrier over ZnO/BVO surface is lower than over BVO surface, which benefiting from the electronic structure regulation by the underlying ZnO alleviates the over-strong adsorption of *OH on BVO, thus the two-electron pathway to produce H2O2 is more favored than on BVO surface. This work highlights the crucial role of band energy structure of semiconductors on both PEC reaction activity and selectivity, and the knowledge gained is expected to be extended to other photoeletrochemical reactions.


Keywords: Photoelectrochemical water oxidation; reaction selectivity; BiVO4 photoanode; production of H2O2; energy band structure.





关闭窗口

姜鲁华 教授
中科院百人

泰山学者特聘教授

德国洪堡学者

     能源短缺和环境污染是当今世界面临的两大难题,研究团队围绕洁净高效新型电能源技术,聚焦电能源相关的纳米材料和电催化应用基础研究。团队已发表SCI收录论文近200篇,申请发明专利80余件。纳米材料与电催化团队负责人姜鲁华教授连续多年入选Elsevier 能源领域/材料领域“中国高被引学者”和“全球前2%顶尖科学家”榜单。主持科技部、国家基金委、山东省科技厅等省部级以上项目20余项。研究成果曾获国家自然科学二等奖、辽宁省自然科学一等奖、国防技术发明二等奖、大连市技术发明一等奖、山东省自然科学学术创新奖等多个奖项。团队教师兼任 Chemical Engineering JournalNano Materials ScineceJournal of Electrochemistry 等多个期刊的编委/编辑。团队多名研究生获得国家奖学金和各类奖助学金以及研究生创新研究计划支持,培养的本科生多人获得大学生创新研究计划支持。

    欢迎有志于新能源和环境纳米电催化研究的青年人才和优秀学子加入团队!


1. 燃料电池催化剂

2. 海水分解制氢

3. 二氧化碳电还原

4. 金属-海水电池

5. 氮的电化学转化