青岛科技大学纳米电催化课题组
当前位置: 首页>>研究成果>>期刊论文>>正文

 

155.Sodium regulated WO6 octahedron engineering interfacial water structure to boost hydrogen evolution reaction, J Energy Chem, accept.
2024-11-01 08:52  

Xiaolei Lia, Chen Songa, Shuyuan Yangc, Qisen Jiaa, Xuejing Cuia, Guangbo Liua,*, Xin Zhoub,c,*, and Luhua Jianga,*

a College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China

b Interdisciplinary Research Center for Biology and Chemistry, Liaoning Normal University, Dalian 116029, P. R. China

c College of Environment and Chemical Engineering, Dalian University, Dalian 116622, P. R. China

* Corresponding authors: liugb@qust.edu.cn; zhouxin@dlu.edu.cn; luhuajiang@qust.edu.cn


Abstract:

Understanding the role of cations within the catalysts in the interfacial water behavior at the electrolyte/catalyst interface is pivotal importance for designing advanced catalysts toward hydrogen evolution reaction (HER), which remains obscure and requires deep probing. Herein, we demonstrate the first investigation of interfacial water behavior on surface of series ofsodium tungsten bronzes (NaxWO3, 0 < x < 1) by using electrochemical, operando spectroscopic and theoretical characterizations, aiming to gain the fundamental insight into the role of sodium ion in the interfacial water structure and subsequent HER at the NaxWO3/electrolyte interface. Our integrated studies indicate that the Na ions significantly enrich the electronic state of WO6 octahedrons in NaxWO3, which leads to the regulated electronic and atomic structures, endowing NaxWO3 with disordered interfacial water network containing more isolated H3O+ and subsequently moderate H* adsorption to speed the Volmer step at the NaxWO3 surface, thus boosting the HER. Consequently, the intrinsic HER activities achieved on those NaxWO3 are tens of times higher than that on WO3. Particularly, it is found that Na concentration x = 0.69 endows NaxWO3 with the highest intrinsic HER activity, and the resultant Na0.69WO3 with unique porous octahedral structure exhibits a low overpotential of only 64 mV at current density of 10 mA cm-2 in acidic electrolyte. This study provides the first insight into the cation-dependent interfacial water behavior induced by the cations within catalyst and establishes the interfacial water-activity relationship of HER, thus allowing for the design of more advanced catalyst with efficient interfacial structures towards HER.


Keywords:Sodium tungsten bronze; sodium-ion; hydrogen evolution; interfacial water; structure-activity relationship





关闭窗口

姜鲁华 教授
中科院百人

泰山学者特聘教授

德国洪堡学者

     能源短缺和环境污染是当今世界面临的两大难题,研究团队围绕洁净高效新型电能源技术,聚焦电能源相关的纳米材料和电催化应用基础研究。团队已发表SCI收录论文近200篇,申请发明专利80余件。纳米材料与电催化团队负责人姜鲁华教授连续多年入选Elsevier 能源领域/材料领域“中国高被引学者”和“全球前2%顶尖科学家”榜单。主持科技部、国家基金委、山东省科技厅等省部级以上项目20余项。研究成果曾获国家自然科学二等奖、辽宁省自然科学一等奖、国防技术发明二等奖、大连市技术发明一等奖、山东省自然科学学术创新奖等多个奖项。团队教师兼任 Chemical Engineering JournalNano Materials ScineceJournal of Electrochemistry 等多个期刊的编委/编辑。团队多名研究生获得国家奖学金和各类奖助学金以及研究生创新研究计划支持,培养的本科生多人获得大学生创新研究计划支持。

    欢迎有志于新能源和环境纳米电催化研究的青年人才和优秀学子加入团队!


1. 燃料电池催化剂

2. 海水分解制氢

3. 二氧化碳电还原

4. 金属-海水电池

5. 氮的电化学转化