青岛科技大学纳米电催化课题组
当前位置: 首页>>研究成果>>期刊论文>>正文

 

160. In-situ Construction of Highly Durable Cuδ+ Species Boosting Electrocatalytic Reduction of CO2 to C2+ Products, Appl Catal B
2025-01-16 17:51  

Jinxiu Wang a, Zhen Liu a, Wen Jin a, Yongxiao Tuo b*, Yan Zhou c, Shanshan Zhou a, Tingting Gong a, Jiamei Li a, Yuting Ni a, Min Wang a*, Luhua Jiang a*


a College of Materials Science & Engineering, Qingdao University of Science & Technology, Qingdao, 266042, P.R. China.

b State Key Laboratory of Heavy Oil Processing, College of New Energy, China University of Petroleum (East China) Qingdao, Shandong 266580, P. R. China.

c Phonon Engineering Research Center of Jiangsu Province, Center for Quantum Transport and Thermal Energy Science, Institute of Physics Frontiers and Interdisciplinary Sciences, School of Physics and Technology, Nanjing Normal University, Nanjing 210023, China.

*Corresponding authors: E-mail: yxtuo@upc.edu.cn; wmin@qust.edu.cn;luhuajiang@qust.edu.cn


Keywords: CO2 electrochemical reduction, In-situ characterization,Cu2OSO4@CuO catalyst,In-situ Evolution,DFT calculations

Abstract

Real-time tracking the dynamic structure reconstruction of Cu-based catalysts during CO2 reduction reaction (CO2RR) and identifying the active sites of catalysts are essential for fundamental understanding on electrocatalysis and thereby rational design of catalysts. However, the exact relationship between structure reconstruction and CO2RR performance remains poorly understood, thus bringing great challenges to rationally designing catalysts and understanding the reaction mechanism. Herein, by virtue of comprehensive in-situ and ex-situ studies, the dynamic structure reconstruction of Cu2OSO4@CuO is elucidated, and it is demonstrated that Cu2OSO4@CuO evolves to S-incorporated Cu2O@Cu (S-Cu2O@Cu). In-situ surface-enhanced infrared absorption spectroscopy (SEIRAS) and density functional theory (DFT) calculations reveal that Cu2O is conducive to the generation of *CO, while the incorporation of S downshifts the d-band center of Cu in Cu2O, facilitating desorption and sequent migration of *CO and *COH to undergo C-C coupling. Consequently, a maximal FE(C2+) of as high as 88% with a partial current density of –609 mA cm2 is achieved for the reconstructed Cu2OSO4@CuO, which outperforms the state-of-the-art Cu-based catalyst. This work not only highlights the significant role of the incorporation of sulfur in enhancing the CO2RR activity over Cu2O, but also provides a feasible strategy to obtain stabilized Cu2O electrocatalyst for CO2RR.



附件【2025-WangJX-ACB.pdf已下载
关闭窗口

姜鲁华 教授
中科院百人

泰山学者特聘教授

德国洪堡学者

     能源短缺和环境污染是当今世界面临的两大难题,研究团队围绕洁净高效新型电能源技术,聚焦电能源相关的纳米材料和电催化应用基础研究。团队已发表SCI收录论文近200篇,申请发明专利80余件。纳米材料与电催化团队负责人姜鲁华教授连续多年入选Elsevier 能源领域/材料领域“中国高被引学者”和“全球前2%顶尖科学家”榜单。主持科技部、国家基金委、山东省科技厅等省部级以上项目20余项。研究成果曾获国家自然科学二等奖、辽宁省自然科学一等奖、国防技术发明二等奖、大连市技术发明一等奖、山东省自然科学学术创新奖等多个奖项。团队教师兼任 Chemical Engineering JournalNano Materials ScineceJournal of Electrochemistry 等多个期刊的编委/编辑。团队多名研究生获得国家奖学金和各类奖助学金以及研究生创新研究计划支持,培养的本科生多人获得大学生创新研究计划支持。

    欢迎有志于新能源和环境纳米电催化研究的青年人才和优秀学子加入团队!


1. 燃料电池催化剂

2. 海水分解制氢

3. 二氧化碳电还原

4. 金属-海水电池

5. 氮的电化学转化