青岛科技大学纳米电催化课题组
当前位置: 首页>>研究成果>>期刊论文>>正文

 

162. Crystal orientation dependent charge transfer dynamics and interfacial water configuration boosting PEC water oxidation, Chin J Struct Chem., accept.
2025-02-26 13:27  

Yan Zhao a, Zhenming Tian a, Qisen Jia a, Ting Yaoc, Jiashu Li a, Yanan Wang a, Xuejing Cui a, Jing Liu a,*, Xin Chen b,c,*, Luhua Jiang a,*

a Nanomaterials and Electrocatalysis Laboratory, College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China

b State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China

c Center for Computational Chemistry and Molecular Simulation, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China

Corresponding authors: liuj955@qust.edu.cn; chenxin830107@pku.edu.cn; luhuajiang@qust.edu.cn


Abstract:

Photoelectrochemical water oxidation reaction (PEC-WOR) as a sustainable route to produce H2O2 is attractive but limited by low activity and poor product selectivity of photoanodes due to limited photogenerated charge efficiency and unfavorable thermodynamics. Herein, by crystal orientation engineering, the WO3 photoanode exposing (200) facets achieves both superior WOR activity (15.4 mA cm-2 at 1.76 VRHE) and high selectivity to H2O2 (~70%). Comprehensive experimental and theoretical investigations discover that the high PEC-WOR activity of WO3-(200) is attributed to the rapid photogenerated charge separation/transfer both in bulk and at interfaces of WO3 (200) facet, which reduces the charge transfer resistance. This, coupling with the unique defective hydrogen bonding network at the WO3-(200)/electrolyte interface evidenced by operando PEC Fourier transform infrared spectroscopy, facilitating the outward-transfer of the WOR-produced H+, lowers the overall reaction barrier for the PEC-WOR. The superior selectivity of PEC-WOR to H2O2 is ascribed to the unique defective hydrogen bonding network alleviated adsorption of *OH over the WO3-(200) facet, which specially lowers the energy barrier of the 2-electron pathway, as compared to the 4-electron pathway. This work addresses the significant role of crystal orientation engineering on photoelectrocatalytic activity and selectivity, and sheds lights on the underlying PEC mechanism by understanding the water adsorption behaviors under illumination. The knowledge gained is expected to be extended to other photoeletrochemical reactions.

Keywords: Photoelectrocatalytic water oxidation; selectivity; crystal orientation engineering; operando Fourier transform infrared spectroscopy; interfacial water structure.



关闭窗口

姜鲁华 教授
中科院百人

泰山学者特聘教授

德国洪堡学者

     能源短缺和环境污染是当今世界面临的两大难题,研究团队围绕洁净高效新型电能源技术,聚焦电能源相关的纳米材料和电催化应用基础研究。团队已发表SCI收录论文近200篇,申请发明专利80余件。纳米材料与电催化团队负责人姜鲁华教授连续多年入选Elsevier 能源领域/材料领域“中国高被引学者”和“全球前2%顶尖科学家”榜单。主持科技部、国家基金委、山东省科技厅等省部级以上项目20余项。研究成果曾获国家自然科学二等奖、辽宁省自然科学一等奖、国防技术发明二等奖、大连市技术发明一等奖、山东省自然科学学术创新奖等多个奖项。团队教师兼任 Chemical Engineering JournalNano Materials ScineceJournal of Electrochemistry 等多个期刊的编委/编辑。团队多名研究生获得国家奖学金和各类奖助学金以及研究生创新研究计划支持,培养的本科生多人获得大学生创新研究计划支持。

    欢迎有志于新能源和环境纳米电催化研究的青年人才和优秀学子加入团队!


1. 燃料电池催化剂

2. 海水分解制氢

3. 二氧化碳电还原

4. 金属-海水电池

5. 氮的电化学转化