青岛科技大学纳米电催化课题组
当前位置: 首页>>研究成果>>期刊论文>>正文

 

164. Coupling Tensile Strain and Electronic Modulation in Mesoporous PdMo Metallene Nanoveins for Improved Oxygen Reduction, Adv Mater
2025-04-21 17:50  

Songliang Liu1, Huaifang Teng1, Kun Ma1, Weixin Miao1,Xiaotong Zhou1, Xuejing Cui1, Xin Zhou2,3*, Luhua Jiang1* and Bao Yu Xia4*

1 Electrocatalysis & Nanomaterial Laboratory, College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China

2 Interdisciplinary Research Center for Biology and Chemistry, Liaoning Normal University, Dalian, Liaoning, 116029, China

3 College of Environment and Chemical Engineering, Dalian University, Dalian 116622, China

4 School of Chemistry and Chemical Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan 430074, China

E-mail: zhouxin@dlu.edu.cn, luhuajiang@qust.edu.cn, byxia@hust.edu.cn

Abstract:

Unraveling the fundamental determinants of the intrinsic activity of practical catalysts has long been challenging, mainly due to the complexity in structures and surfaces of such catalysts. Current understandings of intrinsic activity mostly come from model catalysts. Here, a pH-induced ligand adsorption strategy is developed to achieve controllable synthesis of self-assembled low-dimensional PdMo nanostructures, including 1D nanowires, 2D metallenes, and 2D metallene nanoveins. We establish a strong correlation between the intrinsic oxygen reduction reaction (ORR) activity and the density of grain boundaries. Increased grain boundary density induces moreextensive tensile strain, which, in synergy with electronic interactions within PdMo alloys, effectively lowers the energy barrier of the rate-determining step (*O to *OH).2D PdMo metallene nanoveins, featuring the highest grain boundary density and a unique mesoporous structure, exhibit superior ORR activity and mass transport capabilities. Computational fluid dynamics simulations and in-situ spectroscopy are employed to elucidate the structure-activity relationship. This work provides fundamental insights into the critical role of grain boundary engineering in enhancing ORR electrocatalysis in Pd-based nanostructures.

Keywords: Low-dimensional materials;structure-activity relationship; metallenes; grain boundary; oxygen reduction.






关闭窗口

姜鲁华 教授
中科院百人

泰山学者特聘教授

德国洪堡学者

     能源短缺和环境污染是当今世界面临的两大难题,研究团队围绕洁净高效新型电能源技术,聚焦电能源相关的纳米材料和电催化应用基础研究。团队已发表SCI收录论文近200篇,申请发明专利80余件。纳米材料与电催化团队负责人姜鲁华教授连续多年入选Elsevier 能源领域/材料领域“中国高被引学者”和“全球前2%顶尖科学家”榜单。主持科技部、国家基金委、山东省科技厅等省部级以上项目20余项。研究成果曾获国家自然科学二等奖、辽宁省自然科学一等奖、国防技术发明二等奖、大连市技术发明一等奖、山东省自然科学学术创新奖等多个奖项。团队教师兼任 Chemical Engineering JournalNano Materials ScineceJournal of Electrochemistry 等多个期刊的编委/编辑。团队多名研究生获得国家奖学金和各类奖助学金以及研究生创新研究计划支持,培养的本科生多人获得大学生创新研究计划支持。

    欢迎有志于新能源和环境纳米电催化研究的青年人才和优秀学子加入团队!


1. 燃料电池催化剂

2. 海水分解制氢

3. 二氧化碳电还原

4. 金属-海水电池

5. 氮的电化学转化