青岛科技大学纳米电催化课题组
当前位置: 首页>>研究成果>>期刊论文>>正文

 

169. p-d orbital coupling and interfacial water regulation synergistically promote alkaline hydrogen electrocatalysis on Ru/VC, Chem Eng J.
2025-06-15 16:52  

Hao Hu1, Nuo Sun1, Jie Gao1, Li Wang1, Zhangrong Lou2, Xuejing Cui1, Jing Liu1*, Luhua Jiang1

1 College of Materials Science & Engineering, Qingdao University of Science & Technology, Qingdao, 266042, P.R. China 

2 Dalian University of Technology, Dalian, 116024, P.R. China

Abstract:

Ru as a promising candidate for alkaline hydrogen oxidation (HOR) and hydrogen evolution reactions (HER), is limited by its intrinsic catalytic activity due to the mismatched adsorption for intermediates as well as the insufficient optimization of the interfacial water structure in the electric double layers. Herein, we report a Ru-vanadium carbide (VC) heterostructure catalyst supported on nitrogen-doped carbon, namely Ru/VC@NC, which demonstrates remarkable hydrogen electrocatalysis performance, with a mass activity of 0.87 mA μgRu⁻¹ and a specific activity of 0.63 mA cm⁻² for HOR, along with an impressively low overpotential of just 24 mV at 10 mA cm⁻² for HER, substantially outperforming Pt-C (29 mV) and Ru-XC (42 mV). Comprehensive experimental and theoretical investigations reveal that the electronic structure of Ru/VC is effectively modulated, due to the orbital coupling of Ru d-orbital and VC d/p orbitals, optimizing the adsorption behavior of reaction intermediates. Specifically, the downshifted d-band center of Ru suppresses excessive hydrogen binding energy (HBE), while the V sites in VC enhance hydroxide binding energy (OHBE). Combined with the more interconnected H-bonding network at the electrical double layer (EDL) that facilitates intermediate transport revealed by in-situ surface-enhanced infrared absorption spectroscopy (SEIRAS) these features collectively contribute to the improved hydrogen electrocatalysis. This work highlights the advantage of interfacial engineering in strengthening orbital coupling and synergistically tuning both intermediate adsorption and the reaction microenvironment, to enhance the catalytic activity.


https://doi.org/10.1016/j.cej.2025.167317


附件【2025-17-LiuJ&HuH-CEJ-1.pdf已下载
关闭窗口

姜鲁华 教授
中科院百人

泰山学者特聘教授

德国洪堡学者

     能源短缺和环境污染是当今世界面临的两大难题,研究团队围绕洁净高效新型电能源技术,聚焦电能源相关的纳米材料和电催化应用基础研究。团队已发表SCI收录论文近200篇,申请发明专利80余件。纳米材料与电催化团队负责人姜鲁华教授连续多年入选Elsevier 能源领域/材料领域“中国高被引学者”和“全球前2%顶尖科学家”榜单。主持科技部、国家基金委、山东省科技厅等省部级以上项目20余项。研究成果曾获国家自然科学二等奖、辽宁省自然科学一等奖、国防技术发明二等奖、大连市技术发明一等奖、山东省自然科学学术创新奖等多个奖项。团队教师兼任 Chemical Engineering JournalNano Materials ScineceJournal of Electrochemistry 等多个期刊的编委/编辑。团队多名研究生获得国家奖学金和各类奖助学金以及研究生创新研究计划支持,培养的本科生多人获得大学生创新研究计划支持。

    欢迎有志于新能源和环境纳米电催化研究的青年人才和优秀学子加入团队!


1. 燃料电池催化剂

2. 海水分解制氢

3. 二氧化碳电还原

4. 金属-海水电池

5. 氮的电化学转化