青岛科技大学纳米电催化课题组
当前位置: 首页>>研究成果>>期刊论文>>正文

 

173. Alleviating hydroxyl poisoning on Ru through competitive adsorption regulation using anatase-rutile TiO2 heterostructures, Chin J Catal
2025-07-02 10:40  

Alleviating hydroxyl poisoning on Ru through competitive adsorption regulation using anatase-rutile TiO2 heterostructures in alkaline hydrogen oxidation reaction

Jie Gaoa, Jing Liua*, Mengdi Wanga, Nuo Suna, Hao Hua, Xuejing Cuia, Xin Zhoub,c*, Luhua Jianga*

aCollege of Materials Science & Engineering, Qingdao University of Science & Technology, Qingdao, 266042, P.R. China

bInterdisciplinary Research Center for Biology and Chemistry, Liaoning Normal University, Dalian 116029, P. R. China

cCollege of Environment and Chemical Engineering, Dalian University, Dalian 116622, P. R. China

*Corresponding authors. Email: liuj955@qust.edu.cn (J. Liu); luhuajiang@qust.edu.cn (L. Jiang); zhouxin@dlu.edu.cn (X. Zhou).

Abstract: Ruthenium (Ru) is a promising electrocatalyst for the alkaline hydrogen oxidation reaction (HOR), yet it suffers from deactivation at higher potentials due to excessive oxophilicity, which leads to hydroxyl adsorption poisoning. Here, we report a tri-phase heterostructured catalyst (Ru-P25-TiO2) comprising Ru with anatase (A-) and rutile (R-) TiO2. This catalyst exhibits remarkable HOR activity, delivering 0.82 mA mgRu-1 along with superior electrochemical stability up to 0.9 V vs. RHE, positioning it as the state-of-the-art electrocatalyst for HOR. This enhanced performance is attributed to the optimized electron distribution and a tailored d band structure at the Ru surface, enabled by strong metal and support interaction, which weakens both hydrogen binding energy and hydroxyl binding energy. The highly oxophilic P25-TiO2 facilitates hydroxyl adsorption and establishes a continuous hydrogen-bond network at the catalyst/electrolyte interface, thereby promoting OH⁻ transport and alleviating competitive OH adsorption on the Ru surface. The synergistic interplay between anatase and rutile TiO2 ideally endows Ru with both superior activity and excellent electrochemical stability. This work not only unravels the intrinsic role of biphasic TiO2 in tailoring Ru electrocatalysis but also provides a generalizable synergistic heterostructure design strategy for developing efficient and durable electrocatalysts.

Keywords: Anatase TiO2, Rutile TiO2, Ruthenium, Synergistic interplay, Hydrogen oxidation reaction



关闭窗口

姜鲁华 教授
中科院百人

泰山学者特聘教授

德国洪堡学者

     能源短缺和环境污染是当今世界面临的两大难题,研究团队围绕洁净高效新型电能源技术,聚焦电能源相关的纳米材料和电催化应用基础研究。团队已发表SCI收录论文近200篇,申请发明专利80余件。纳米材料与电催化团队负责人姜鲁华教授连续多年入选Elsevier 能源领域/材料领域“中国高被引学者”和“全球前2%顶尖科学家”榜单。主持科技部、国家基金委、山东省科技厅等省部级以上项目20余项。研究成果曾获国家自然科学二等奖、辽宁省自然科学一等奖、国防技术发明二等奖、大连市技术发明一等奖、山东省自然科学学术创新奖等多个奖项。团队教师兼任 Chemical Engineering JournalNano Materials ScineceJournal of Electrochemistry 等多个期刊的编委/编辑。团队多名研究生获得国家奖学金和各类奖助学金以及研究生创新研究计划支持,培养的本科生多人获得大学生创新研究计划支持。

    欢迎有志于新能源和环境纳米电催化研究的青年人才和优秀学子加入团队!


1. 燃料电池催化剂

2. 海水分解制氢

3. 二氧化碳电还原

4. 金属-海水电池

5. 氮的电化学转化